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Quick Definition Guide 

x position    

v velocity    

a acceleration    

F force     

J impulse    

m mass     

k stiffness coefficient   

c damping coefficient   

t time     

Δ delta 
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𝛥𝑡
= 𝑚𝑣 = 𝑚𝑎𝛥𝑡 = 𝐹𝛥𝑡 = 𝑱

 

 

Abstract 

 In this article we will derive a modified but very simple damped spring 

equation that doesn't display any of the problems most game-developers associate 

with springs. From a game physics perspective, the spring equation combines the 

highest possible degree of stiffness and damping with great numerical stability. From 

a game designing and level editing perspective, the equation is easy to implement 

and tune, and it doesn't require the game designer to have any background 

knowledge about physics. The spring does not need to be re-tuned if parameters like 

particle mass or simulation time step are changed. This makes the improved spring 

equation a great tool for game designers and engine programmers alike. 
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The trouble with springs... 

 In the game development community, the damped spring based on Hooke's 

law of elasticity is often regarded as the black sheep of game physics, and a number 

of notable books, papers and websites warns the reader against implementing them. 

There are at least two good reasons for this.  

The most straight-forward reason is that springs are notoriously difficult to 

tune. It can be very time consuming to adjust the stiffness and damping coefficients 

in order to make a simulation behave just right. For large spring systems the task can 

be daunting. If a single variable is changed, for instance a spring coefficient, the mass 

of a particle, or the physics engine time step, you might have to re-tune everything 

from scratch.  

A deeper reason for avoiding springs is that they are prone to instability. Every 

once in a while, a system of connected springs and particles will blow up in your face 

without warning, and for no apparent reason – usually followed by a program crash. 

This happens because either simulation time step or spring coefficients have been set 

too high, or particle mass has been set too low, placing the simulation outside it's 

(usually unknown) range of stability.  

The problem is that there’s no simple or death-proof way to determine what 

combination of values adds up to a stable system. Thus, the game designer's ability to 

balance a spring system often relies on experience and “gut feeling”, which makes it 

look more like black magic than actual physics. This lack of transparency is why the 

game development community looks upon springs with a lot of suspicion. 

 

Improving Hooke's infamous damped spring 

 In the following pages we will do a complete breakdown of the math behind 

damped springs and use it to reformulate the old equation in a way that makes sense 

for game developers. We will only be focusing on how springs work in the discrete 

time-stepping world of game physics, not how they work in real-life, which is a 

slightly different thing. First, let's take a look at the equation at hand: 

 

𝐹 = −𝑘𝑥 − 𝑐𝑣 

 

 The equation is divided up into two parts. The first part calculates a spring 



3 

force that is linearly proportional to displacement x, and the second part calculates a 

damping force that is linearly proportional to velocity v. The value of the stiffness 

and damping coefficients k and c decide the magnitude of the forces. 

 

 Game designers usually want a spring to be as rigid as possible. That is, they 

want it to behave like a steel rod, and not like a soggy old rubber band. But what k 

and c values do we plug in to achieve this behaviour? 0.001? 1.337E42? For someone 

who doesn't understand the underlying math it is basically trial-and-error: Plug in a 

random value. If the spring behaves too sloppy, increase the value, and if the 

simulation becomes jittery or explodes, decrease it. 

 In the following section we will derive a spring equation that eliminates this 

challenge and allows the game designer to implement a spring that will always stay 

inside the safe region of stability and will reach its rest state in as little as one loop. 

To explain how this is done we first need to take a look at our integrator – the part of 

the program that computes new particle velocities and positions based on the forces 

applied to them. The most commonly used integrator is the so-called symplectic 

Euler or semi-explicit Euler method: 

 

𝑣(௧ା௱௧) = 𝑣(௧) + 𝑎(௧)𝛥𝑡

𝑥(௧ା௱௧) = 𝑥(௧) + 𝑣(௧ା௱௧)𝛥𝑡
 

 

 This integrator is popular because it is very easy to implement, and it displays 

great energy conservation and stability compared to similar algorithms. Please notice 

that velocity is expressed as v = a Δt, and that distance is expressed as x = v Δt. 

 

 Let's move on and look at a damped spring attached to a fixed point in one end 

and a particle in the other. Assume that the particle is displaced distance x from its 

rest position. Now let us try to find the force required to move it the opposite 

distance in one loop with the symplectic Euler algorithm. From Newton's 2nd law of 

motion we know that a = F / m, which give us the following relationship between 

distance and force: 
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𝑥 = −𝑣𝛥𝑡 = −𝑎𝛥𝑡ଶ = −
ி

௠
𝛥𝑡ଶ  

 

The minus sign simply means that we are going in the opposite direction of the 

displacement. Now we can isolate force: 

 

𝐹 = −
𝑚

𝛥𝑡ଶ
𝑥 

 

And since the spring force in Hooke's law of elasticity is defined as: 

 

𝐹 = −𝑘𝑥 

 

It becomes immediately clear that: 

 

𝑘 =
𝑚

𝛥𝑡ଶ
 

 

 Which is the exact stiffness coefficient value required to move the particle 

back to its rest position in one simulation loop. However, since we are not doing 

anything to stop the particle, it will keep oscillating back and forth through the rest 

position. We need to add damping, which is done with the second part of the spring 

equation. 

 Let's assume the particle has a velocity v that we want to eliminate. By 

calculating the amount of force needed to exactly counter this velocity, we can make 

the particle stop at the rest distance. In the Symplectic Euler integration algorithm 

we have the following relationship between velocity and force: 

 

𝑣 = −𝑎𝛥𝑡 = −
𝐹

𝑚
𝛥𝑡 

 

When isolating force we get: 

 

𝐹 = −
𝑚

𝛥𝑡
𝑣 
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And since the damping force is defined: 

 

𝐹 = −𝑐𝑣 

 

We immediately see by inspection that the damping coefficient is: 

 

𝑐 =
𝑚

𝛥𝑡
 

 

This is the exact damping coefficient value needed to make the spring stop the 

particle in one simulation loop. Now we can join the two parts and write out the 

complete damped spring equation in its most raw and basic form: 

 

𝐹 = −
𝑚

𝛥𝑡ଶ
𝑥 −

𝑚

𝛥𝑡
𝑣 

 

 This spring equation has some very interesting properties. The first thing we 

notice is the lack of coefficients. We've simply replaced k with m/Δt2 and c with m/Δt. 

When implementing the equation we see that it really does work! The spring reaches 

rest length and stops dead without any oscillation in one loop, completely 

independent of particle position, velocity, mass, and physics engine time step. 

 This is the stiffest possible spring we can imagine, and it displays behaviour 

more similar to a rigid constraint than a soft, bouncy spring. We have found the steel 

rod spring we were looking for in the beginning of the chapter. This is a big deal: In 

game-physics papers it is considered a universal truth that to get infinite spring 

stiffness you need an infinitely high k value, which is not possible. This is obviously 

not true; we get infinite stiffness from finite k and c values. 

 

The equation also has another interesting property. It simply cannot blow up no 

matter what values we throw at it. Practically speaking, we can regard the spring as 

being unconditionally stable. 

 We can refactor the equation a bit so it's easier to use in a programming 

context. Now time step, state, and mass are separated, which makes it easier to write 

re-useable code. Since physics engines normally run with a fixed time step, we can 
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also pre-compute the 1/Δt and 1/Δt2 values and save a few precious CPU-cycles. 

 

𝐹 = −(
1

𝛥𝑡ଶ
𝑥 +

1

𝛥𝑡
𝑣)𝑚 

 

Re-introducing coefficients 

 Now we have a really powerful spring equation. It is easy to implement, very 

stable, and it reaches its rest-state in just one loop. But in our quest towards a better 

spring it has lost its springiness. We need to get the softness and bounciness back 

again, and for this purpose we will re-introduce stiffness and damping coefficients. 

 To avoid confusion, the new coefficients are named Cs and Cd. While the 

original coefficients could represent any positive numerical value, these both lie in 

the interval between zero and one. 

 

𝐹 = −(
ଵ

௱௧మ
𝑥𝐶௦ +

ଵ

௱௧
𝑣𝐶ௗ)𝑚  [0.0 ≤ 𝐶௦, 𝐶ௗ ≤ 1.0] 

 

 As we can see, the new coefficients are simply the fraction of completely rigid 

behaviour we would like the spring to display. Soft, bouncy springs would usually 

have values in the range of 0.00001 – 0.001. In the other end of the scale, values of 

just 0.01 – 0.1 is enough to display rigid behaviour. Setting both values to 1.0 would 

of course still satisfy the spring in one loop. 

 Please notice that spring behaviour is determined exclusively by these two 

coefficients. Particle mass or simulation time step has literally no influence on how 

the spring behaves, and changing them – even during runtime – wouldn't make it 

necessary to re-tune the system. This makes the spring a much more powerful and 

developer-friendly tool that can be used safely by designers without any worries 

about possible future changes in game physics. 

 Interestingly, the spring will get less rigid and less stable if we increase the Cs 

or Cd values above one. This happens because the particles overshoot their target rest 

values, leading to undefined behaviour. If we keep increasing either or both of the 

coefficients, the system will start to jitter, and at some point it will ride the Neptune 

Express. In other words, we have – almost by accident – determined the exact upper 

limit for the two spring coefficients, which we can define: 
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𝑠max =
𝑚

𝛥𝑡ଶ
, 𝑑max =

𝑚

𝛥𝑡
 

 

 This also allows us to simplify the spring a bit, making it almost as simple as 

the equation we started out with: 

 

𝐹 = −𝑠max𝑥𝐶௦ − 𝑑max𝑣𝐶ௗ 

 

 Now it also becomes clear why so many people dislike the Hooke's law spring 

equation. Not because it is inherently bad, but because it is so easy to accidentally 

plug in a coefficient value that doesn't make any sense. The equation derived in this 

paper always scales spring force to fit time step and mass, but the original equation 

does not. 

 This makes it very easy for the less physics-minded game designer to 

inadvertently plug in a coefficient value above the upper limits we have just derived. 

In the original equation it isn't even apparent that there is such a thing as an upper 

limit. I would like to stress the point that this lack of transparency in the original 

Hooke's law spring is the main reason why so many people have frustrating 

experiences with it. 

 

Two connected particles with different mass 

 It is only slightly more complicated to constrain two free-moving particles 

with the improved spring. To do this, we need to introduce the concept of reduced 

mass. This is a quantity that can be used to compute interactions between two bodies 

as-if one body were stationary, which allows us to reuse the equation we've already 

derived. The reduced mass for two particles with mass ma and mb is defined: 

 

𝑚reduced =
𝑚௔𝑚௕

(𝑚௔ +𝑚௕)
 

 

Since the inverse mass quantity is often pre-computed for other purposes, it can also 

be useful to define reduced mass like this: 
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𝑚reduced =
1

(1 𝑚௔⁄ + 1 𝑚௕⁄ )
 

 

Unsurprisingly, the maximum coefficient values for two connected particles are: 

 

𝑠max =
𝑚reduced

𝛥𝑡ଶ
, 𝑑max =

𝑚reduced

𝛥𝑡
 

 

Which gives us the following equation to work with: 

       

𝐹 = −(
1

𝛥𝑡ଶ
𝑥𝐶௦ +

1

𝛥𝑡
𝑣𝐶ௗ)𝑚reduced 

 

 This spring equation will move two connected particles of any given mass to 

rest distance and make them stand still relative to each other in one loop. However, 

since angular momentum is conserved, the particles may rotate around each other, 

which will make the bodies come to rest at a larger distance, depending on how fast 

they spin. 

 

Impulse-based spring 

 Today, most physics engines are based on impulses, or direct changes in 

velocities, rather than forces and acceleration. The spring equation described above 

works just as well if we redesign it to work at impulse-level. Since impulse is defined 

J = F Δt, the symplectic Euler integration algorithm needs a little update: 

 

𝑣(௧ା௱௧) = 𝑣(௧) +
𝐽(௧)

𝑚

𝑥(௧ା௱௧) = 𝑥(௧) + 𝑣(௧ା௱௧)𝛥𝑡

 

 

The maximum coefficient values for the impulse based spring are: 

 

𝑠max =
𝑚reduced

𝛥𝑡
, 𝑑max = 𝑚reduced 
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 This gives us the following impulse based spring to work with. When used 

with the integration algorithm shown above, this equation returns the numerically 

exact same result as the force based spring we derived earlier in the paper. 

 

𝐽 = −(
1

𝛥𝑡
𝑥𝐶௦ + 𝑣𝐶ௗ)𝑚reduced 

 

And that pretty much sums it up. Now I think it's about time we got our hands dirty 

and turned all the math into a working piece of code. 

 

From math to code 

 I am using C++ syntax in the following code snippets, but for the sake of 

brevity and clarity I have kept them unoptimized and as simple as possible. With a 

little effort you should be able to make them run in your own favourite programming 

language. First let's define the particle class, which should be pretty self-explanatory: 

 

class Particle 

{ 

 vec2  position;  // 

 vec2  velocity;  // 

 vec2  impulse;  // 

 float inverse_mass;  // Set to zero for infinite mass = static object. 

}; 

 

Next we have the spring class, which is equally simple: 

 
class Spring 

{ 

 vec2      unit_vector; // Normalized distance vector. 

 float     rest_distance; // 

 float     reduced_mass; // 

 Particle* particle_a; // Pointer to endpoint particle a. 

 Particle* particle_b; // Pointer to endpoint particle b. 

}; 

 

Then we have the function that updates particle state. This part of the code 
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implements the symplectic Euler integration algorithm and it is important to 

understand that the spring equation is tailored to be used with this update method. If 

you swap this out with another algorithm, it will break the spring equation. 

 

void ComputeNewState( Particle* P ) 

{ 

 // Compute new velocity from impulse, scaled by mass. 

 P->velocity += P->impulse * P->inverse_mass;  

  

 // Compute new position from velocity. 

 P->position += P->velocity * TIMESTEP; 

  

 // Reset impulse vector. 

 P->impulse = Vec2( 0.0, 0.0 ); 

} 

 

 Finally there is the function that computes and applies the spring impulse to 

its two endpoint particles. This is the core of our physics engine, and this is where the 

spring equation dwells. 

 
void ComputeSpringImpulse( Spring* S ) 

{ 

 // First we calculate the distance and velocity vectors. 

 vec2 distance = S->particle_b->position - S->particle_a->position; 

 vec2 velocity = S->particle_b->velocity - S->particle_a->velocity; 

  

 // We normalize the distance vector to get the unit vector. 

 S->unit_vector = distance.normalize(); 

  

 // Now we calculate the distance and velocity errors. 

 float distance_error = S->unit_vector.dot( distance ) - S->rest_distance; 

 float velocity_error = S->unit_vector.dot( velocity ); 

  

 // Now we use the spring equation to calculate the impulse. 

 float distance_impulse = C_S * distance_error * INVERSE_TIMESTEP; 

 float velocity_impulse = C_D * velocity_error; 

 float impulse =  -( distance_impulse + velocity_impulse ) * S->reduced_mass; 

  

 // Finally, we apply opposite equal impulses to the endpoint particles. 

 S->particle_a->impulse -= impulse * S->unit_vector; 

 S->particle_b->impulse += impulse * S->unit_vector; 

} 
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Limitations and Pitfalls 

 When connecting multiple springs and particles into larger bodies, we run into 

the same trouble as with any other type of constraint. Rather than cooperating, they 

tend to compete against each other, and this spells trouble. When a spring moves two 

particles to satisfy distance and velocity, it usually means dissatisfying one or several 

other springs. It is outside the scope of this article to dig deeply into this problem, 

but I would like to provide a bit of advice on how to prevent the worst disasters. 

 

 When two or more springs are connected to the same particle, which is the 

case in any kind of rope, mesh, or squishy body, setting the coefficients to the 

maximum value of 1.0 will lead to stability problems. Although the spring equation is 

stable when particles are connected to just one spring, this is sadly not the case for 

higher number of springs. After some lengthy tampering I have worked out that a 

safe upper limit for both the stiffness and damping coefficient is: 

 

𝐶max ≈
ଵ

(௡ାଵ)
  

 

 Where n denotes the highest number of springs attached to any of the two 

particles connected by the spring. So for example, in a rope where any particle is 

connected by at most two springs, Cs and Cd can both safely be set to 0.33, and in a 

square mesh, where any particle is at most connected by four springs, they can be set 

to 0.2. 

 

Conclusion and future work 

 As promised, I have managed to derive a very stable, rigid, and user-friendly 

spring equation over the course of a few pages. The math behind the equation is 

surprisingly simple, which makes me wonder why it hasn't been described or 

implemented decades ago. In the next article, we will look further into the mentioned 

limitations when implementing large systems of interconnected springs and improve 

it even further using an iterative approach with warm starting. 
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