
1

A friendly game designer's tutorial on

How to make your damped springs stiffer,

more stable, and easier to tune

Written by Michael Schmidt Nissen

Version 0.8.0, February 2023

Quick Definition Guide

x position

v velocity

a acceleration

F force

J impulse

m mass

k stiffness coefficient

c damping coefficient

t time

Δ delta

𝒙 = 𝑣𝛥𝑡 = 𝑎𝛥𝑡ଶ =
𝐹

𝑚
𝛥𝑡ଶ =

𝐽

𝑚
𝛥𝑡ଷ

𝛥𝑥

𝛥𝑡
= 𝒗 = 𝑎𝛥𝑡 =

𝐹

𝑚
𝛥𝑡 =

𝐽

𝑚
𝛥𝑡ଶ

𝛥𝑥

𝛥𝑡ଶ
=
𝛥𝑣

𝛥𝑡
= 𝒂 =

𝐹

𝑚
=

𝐽

𝑚
𝛥𝑡

𝑚
𝛥𝑥

𝛥𝑡ଶ
= 𝑚

𝛥𝑣

𝛥𝑡
= 𝑚𝑎 = 𝑭 =

𝐽

𝛥𝑡

𝑚
𝛥𝑥

𝛥𝑡
= 𝑚𝑣 = 𝑚𝑎𝛥𝑡 = 𝐹𝛥𝑡 = 𝑱

Abstract

 In this article we will derive a modified but very simple damped spring

equation that doesn't display any of the problems most game-developers associate

with springs. From a game physics perspective, the spring equation combines the

highest possible degree of stiffness and damping with great numerical stability. From

a game designing and level editing perspective, the equation is easy to implement

and tune, and it doesn't require the game designer to have any background

knowledge about physics. The spring does not need to be re-tuned if parameters like

particle mass or simulation time step are changed. This makes the improved spring

equation a great tool for game designers and engine programmers alike.

2

The trouble with springs...

 In the game development community, the damped spring based on Hooke's

law of elasticity is often regarded as the black sheep of game physics, and a number

of notable books, papers and websites warns the reader against implementing them.

There are at least two good reasons for this.

The most straight-forward reason is that springs are notoriously difficult to

tune. It can be very time consuming to adjust the stiffness and damping coefficients

in order to make a simulation behave just right. For large spring systems the task can

be daunting. If a single variable is changed, for instance a spring coefficient, the mass

of a particle, or the physics engine time step, you might have to re-tune everything

from scratch.

A deeper reason for avoiding springs is that they are prone to instability. Every

once in a while, a system of connected springs and particles will blow up in your face

without warning, and for no apparent reason – usually followed by a program crash.

This happens because either simulation time step or spring coefficients have been set

too high, or particle mass has been set too low, placing the simulation outside it's

(usually unknown) range of stability.

The problem is that there’s no simple or death-proof way to determine what

combination of values adds up to a stable system. Thus, the game designer's ability to

balance a spring system often relies on experience and “gut feeling”, which makes it

look more like black magic than actual physics. This lack of transparency is why the

game development community looks upon springs with a lot of suspicion.

Improving Hooke's infamous damped spring

 In the following pages we will do a complete breakdown of the math behind

damped springs and use it to reformulate the old equation in a way that makes sense

for game developers. We will only be focusing on how springs work in the discrete

time-stepping world of game physics, not how they work in real-life, which is a

slightly different thing. First, let's take a look at the equation at hand:

𝐹 = −𝑘𝑥 − 𝑐𝑣

 The equation is divided up into two parts. The first part calculates a spring

3

force that is linearly proportional to displacement x, and the second part calculates a

damping force that is linearly proportional to velocity v. The value of the stiffness

and damping coefficients k and c decide the magnitude of the forces.

 Game designers usually want a spring to be as rigid as possible. That is, they

want it to behave like a steel rod, and not like a soggy old rubber band. But what k

and c values do we plug in to achieve this behaviour? 0.001? 1.337E42? For someone

who doesn't understand the underlying math it is basically trial-and-error: Plug in a

random value. If the spring behaves too sloppy, increase the value, and if the

simulation becomes jittery or explodes, decrease it.

 In the following section we will derive a spring equation that eliminates this

challenge and allows the game designer to implement a spring that will always stay

inside the safe region of stability and will reach its rest state in as little as one loop.

To explain how this is done we first need to take a look at our integrator – the part of

the program that computes new particle velocities and positions based on the forces

applied to them. The most commonly used integrator is the so-called symplectic

Euler or semi-explicit Euler method:

𝑣(௧ା௱௧) = 𝑣(௧) + 𝑎(௧)𝛥𝑡

𝑥(௧ା௱௧) = 𝑥(௧) + 𝑣(௧ା௱௧)𝛥𝑡

 This integrator is popular because it is very easy to implement, and it displays

great energy conservation and stability compared to similar algorithms. Please notice

that velocity is expressed as v = a Δt, and that distance is expressed as x = v Δt.

 Let's move on and look at a damped spring attached to a fixed point in one end

and a particle in the other. Assume that the particle is displaced distance x from its

rest position. Now let us try to find the force required to move it the opposite

distance in one loop with the symplectic Euler algorithm. From Newton's 2nd law of

motion we know that a = F / m, which give us the following relationship between

distance and force:

4

𝑥 = −𝑣𝛥𝑡 = −𝑎𝛥𝑡ଶ = −
ி

𝛥𝑡ଶ

The minus sign simply means that we are going in the opposite direction of the

displacement. Now we can isolate force:

𝐹 = −
𝑚

𝛥𝑡ଶ
𝑥

And since the spring force in Hooke's law of elasticity is defined as:

𝐹 = −𝑘𝑥

It becomes immediately clear that:

𝑘 =
𝑚

𝛥𝑡ଶ

 Which is the exact stiffness coefficient value required to move the particle

back to its rest position in one simulation loop. However, since we are not doing

anything to stop the particle, it will keep oscillating back and forth through the rest

position. We need to add damping, which is done with the second part of the spring

equation.

 Let's assume the particle has a velocity v that we want to eliminate. By

calculating the amount of force needed to exactly counter this velocity, we can make

the particle stop at the rest distance. In the Symplectic Euler integration algorithm

we have the following relationship between velocity and force:

𝑣 = −𝑎𝛥𝑡 = −
𝐹

𝑚
𝛥𝑡

When isolating force we get:

𝐹 = −
𝑚

𝛥𝑡
𝑣

5

And since the damping force is defined:

𝐹 = −𝑐𝑣

We immediately see by inspection that the damping coefficient is:

𝑐 =
𝑚

𝛥𝑡

This is the exact damping coefficient value needed to make the spring stop the

particle in one simulation loop. Now we can join the two parts and write out the

complete damped spring equation in its most raw and basic form:

𝐹 = −
𝑚

𝛥𝑡ଶ
𝑥 −

𝑚

𝛥𝑡
𝑣

 This spring equation has some very interesting properties. The first thing we

notice is the lack of coefficients. We've simply replaced k with m/Δt2 and c with m/Δt.

When implementing the equation we see that it really does work! The spring reaches

rest length and stops dead without any oscillation in one loop, completely

independent of particle position, velocity, mass, and physics engine time step.

 This is the stiffest possible spring we can imagine, and it displays behaviour

more similar to a rigid constraint than a soft, bouncy spring. We have found the steel

rod spring we were looking for in the beginning of the chapter. This is a big deal: In

game-physics papers it is considered a universal truth that to get infinite spring

stiffness you need an infinitely high k value, which is not possible. This is obviously

not true; we get infinite stiffness from finite k and c values.

The equation also has another interesting property. It simply cannot blow up no

matter what values we throw at it. Practically speaking, we can regard the spring as

being unconditionally stable.

 We can refactor the equation a bit so it's easier to use in a programming

context. Now time step, state, and mass are separated, which makes it easier to write

re-useable code. Since physics engines normally run with a fixed time step, we can

6

also pre-compute the 1/Δt and 1/Δt2 values and save a few precious CPU-cycles.

𝐹 = −(
1

𝛥𝑡ଶ
𝑥 +

1

𝛥𝑡
𝑣)𝑚

Re-introducing coefficients

 Now we have a really powerful spring equation. It is easy to implement, very

stable, and it reaches its rest-state in just one loop. But in our quest towards a better

spring it has lost its springiness. We need to get the softness and bounciness back

again, and for this purpose we will re-introduce stiffness and damping coefficients.

 To avoid confusion, the new coefficients are named Cs and Cd. While the

original coefficients could represent any positive numerical value, these both lie in

the interval between zero and one.

𝐹 = −(
ଵ

௱௧మ
𝑥𝐶௦ +

ଵ

௱௧
𝑣𝐶ௗ)𝑚 [0.0 ≤ 𝐶௦, 𝐶ௗ ≤ 1.0]

 As we can see, the new coefficients are simply the fraction of completely rigid

behaviour we would like the spring to display. Soft, bouncy springs would usually

have values in the range of 0.00001 – 0.001. In the other end of the scale, values of

just 0.01 – 0.1 is enough to display rigid behaviour. Setting both values to 1.0 would

of course still satisfy the spring in one loop.

 Please notice that spring behaviour is determined exclusively by these two

coefficients. Particle mass or simulation time step has literally no influence on how

the spring behaves, and changing them – even during runtime – wouldn't make it

necessary to re-tune the system. This makes the spring a much more powerful and

developer-friendly tool that can be used safely by designers without any worries

about possible future changes in game physics.

 Interestingly, the spring will get less rigid and less stable if we increase the Cs

or Cd values above one. This happens because the particles overshoot their target rest

values, leading to undefined behaviour. If we keep increasing either or both of the

coefficients, the system will start to jitter, and at some point it will ride the Neptune

Express. In other words, we have – almost by accident – determined the exact upper

limit for the two spring coefficients, which we can define:

7

𝑠max =
𝑚

𝛥𝑡ଶ
, 𝑑max =

𝑚

𝛥𝑡

 This also allows us to simplify the spring a bit, making it almost as simple as

the equation we started out with:

𝐹 = −𝑠max𝑥𝐶௦ − 𝑑max𝑣𝐶ௗ

 Now it also becomes clear why so many people dislike the Hooke's law spring

equation. Not because it is inherently bad, but because it is so easy to accidentally

plug in a coefficient value that doesn't make any sense. The equation derived in this

paper always scales spring force to fit time step and mass, but the original equation

does not.

 This makes it very easy for the less physics-minded game designer to

inadvertently plug in a coefficient value above the upper limits we have just derived.

In the original equation it isn't even apparent that there is such a thing as an upper

limit. I would like to stress the point that this lack of transparency in the original

Hooke's law spring is the main reason why so many people have frustrating

experiences with it.

Two connected particles with different mass

 It is only slightly more complicated to constrain two free-moving particles

with the improved spring. To do this, we need to introduce the concept of reduced

mass. This is a quantity that can be used to compute interactions between two bodies

as-if one body were stationary, which allows us to reuse the equation we've already

derived. The reduced mass for two particles with mass ma and mb is defined:

𝑚reduced =
𝑚𝑚

(𝑚 +𝑚)

Since the inverse mass quantity is often pre-computed for other purposes, it can also

be useful to define reduced mass like this:

8

𝑚reduced =
1

(1 𝑚⁄ + 1 𝑚⁄)

Unsurprisingly, the maximum coefficient values for two connected particles are:

𝑠max =
𝑚reduced

𝛥𝑡ଶ
, 𝑑max =

𝑚reduced

𝛥𝑡

Which gives us the following equation to work with:

𝐹 = −(
1

𝛥𝑡ଶ
𝑥𝐶௦ +

1

𝛥𝑡
𝑣𝐶ௗ)𝑚reduced

 This spring equation will move two connected particles of any given mass to

rest distance and make them stand still relative to each other in one loop. However,

since angular momentum is conserved, the particles may rotate around each other,

which will make the bodies come to rest at a larger distance, depending on how fast

they spin.

Impulse-based spring

 Today, most physics engines are based on impulses, or direct changes in

velocities, rather than forces and acceleration. The spring equation described above

works just as well if we redesign it to work at impulse-level. Since impulse is defined

J = F Δt, the symplectic Euler integration algorithm needs a little update:

𝑣(௧ା௱௧) = 𝑣(௧) +
𝐽(௧)

𝑚

𝑥(௧ା௱௧) = 𝑥(௧) + 𝑣(௧ା௱௧)𝛥𝑡

The maximum coefficient values for the impulse based spring are:

𝑠max =
𝑚reduced

𝛥𝑡
, 𝑑max = 𝑚reduced

9

 This gives us the following impulse based spring to work with. When used

with the integration algorithm shown above, this equation returns the numerically

exact same result as the force based spring we derived earlier in the paper.

𝐽 = −(
1

𝛥𝑡
𝑥𝐶௦ + 𝑣𝐶ௗ)𝑚reduced

And that pretty much sums it up. Now I think it's about time we got our hands dirty

and turned all the math into a working piece of code.

From math to code

 I am using C++ syntax in the following code snippets, but for the sake of

brevity and clarity I have kept them unoptimized and as simple as possible. With a

little effort you should be able to make them run in your own favourite programming

language. First let's define the particle class, which should be pretty self-explanatory:

class Particle

{

 vec2 position; //

 vec2 velocity; //

 vec2 impulse; //

 float inverse_mass; // Set to zero for infinite mass = static object.

};

Next we have the spring class, which is equally simple:

class Spring

{

 vec2 unit_vector; // Normalized distance vector.

 float rest_distance; //

 float reduced_mass; //

 Particle* particle_a; // Pointer to endpoint particle a.

 Particle* particle_b; // Pointer to endpoint particle b.

};

Then we have the function that updates particle state. This part of the code

10

implements the symplectic Euler integration algorithm and it is important to

understand that the spring equation is tailored to be used with this update method. If

you swap this out with another algorithm, it will break the spring equation.

void ComputeNewState(Particle* P)

{

 // Compute new velocity from impulse, scaled by mass.

 P->velocity += P->impulse * P->inverse_mass;

 // Compute new position from velocity.

 P->position += P->velocity * TIMESTEP;

 // Reset impulse vector.

 P->impulse = Vec2(0.0, 0.0);

}

 Finally there is the function that computes and applies the spring impulse to

its two endpoint particles. This is the core of our physics engine, and this is where the

spring equation dwells.

void ComputeSpringImpulse(Spring* S)

{

 // First we calculate the distance and velocity vectors.

 vec2 distance = S->particle_b->position - S->particle_a->position;

 vec2 velocity = S->particle_b->velocity - S->particle_a->velocity;

 // We normalize the distance vector to get the unit vector.

 S->unit_vector = distance.normalize();

 // Now we calculate the distance and velocity errors.

 float distance_error = S->unit_vector.dot(distance) - S->rest_distance;

 float velocity_error = S->unit_vector.dot(velocity);

 // Now we use the spring equation to calculate the impulse.

 float distance_impulse = C_S * distance_error * INVERSE_TIMESTEP;

 float velocity_impulse = C_D * velocity_error;

 float impulse = -(distance_impulse + velocity_impulse) * S->reduced_mass;

 // Finally, we apply opposite equal impulses to the endpoint particles.

 S->particle_a->impulse -= impulse * S->unit_vector;

 S->particle_b->impulse += impulse * S->unit_vector;

}

11

Limitations and Pitfalls

 When connecting multiple springs and particles into larger bodies, we run into

the same trouble as with any other type of constraint. Rather than cooperating, they

tend to compete against each other, and this spells trouble. When a spring moves two

particles to satisfy distance and velocity, it usually means dissatisfying one or several

other springs. It is outside the scope of this article to dig deeply into this problem,

but I would like to provide a bit of advice on how to prevent the worst disasters.

 When two or more springs are connected to the same particle, which is the

case in any kind of rope, mesh, or squishy body, setting the coefficients to the

maximum value of 1.0 will lead to stability problems. Although the spring equation is

stable when particles are connected to just one spring, this is sadly not the case for

higher number of springs. After some lengthy tampering I have worked out that a

safe upper limit for both the stiffness and damping coefficient is:

𝐶max ≈
ଵ

(ାଵ)

 Where n denotes the highest number of springs attached to any of the two

particles connected by the spring. So for example, in a rope where any particle is

connected by at most two springs, Cs and Cd can both safely be set to 0.33, and in a

square mesh, where any particle is at most connected by four springs, they can be set

to 0.2.

Conclusion and future work

 As promised, I have managed to derive a very stable, rigid, and user-friendly

spring equation over the course of a few pages. The math behind the equation is

surprisingly simple, which makes me wonder why it hasn't been described or

implemented decades ago. In the next article, we will look further into the mentioned

limitations when implementing large systems of interconnected springs and improve

it even further using an iterative approach with warm starting.

12

About the author

 Michael Schmidt Nissen lives in Denmark and currently makes a living as a

back-end developer. In his earlier life he worked as a schoolteacher and historical

blacksmith. He belongs to a very small group of people who knows how to extract

iron and steel from iron ores using the same techniques as his Viking ancestors.

Programming, especially small games and physics simulations, has been a beloved

hobby ever since Michael learned to code in the golden era of the Commodore 64

and Amiga 500.

If you enjoyed reading this article, please consider giving it some constructive

feedback or sharing it with your colleagues. Also, if you use the spring equation in a

game or demo, please do give the author credit for it.

Links

https://en.wikipedia.org/wiki/Hooke%27s_law

https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion

https://en.wikipedia.org/wiki/Reduced_mass

https://en.wikipedia.org/wiki/Semi-implicit_Euler_method

http://gafferongames.com/game-physics/spring-physics/

